博客
关于我
【点云StatisticalOutlierFilter】python-pcl:去除离群点
阅读量:204 次
发布时间:2019-02-28

本文共 779 字,大约阅读时间需要 2 分钟。

点云去除离群点

方法:使用K近邻方法进行点云处理,通过计算标准距离筛选离群点。具体实现如下:

原理:K近邻算法用于确定每个点的邻近点数,计算标准距离。设置离群点的标准为距离超过标准距离乘以系数后的点数。

结果:将点云分为内点和离群点两部分。通过设置参数,可选保存离群点或保留内点的点云文件。

官方示例效果表现为:通过去除柱子腿周围的离散点,显著清洁了点云数据。

注意:在实际应用中,点云密度较大时,效果可能会受到影响,建议根据具体需求调整参数。

import pcldef main():    # 加载点云数据    p = pcl.load("D:/tests/tutorials/table_scene_lms400.pcd")        # 初始化滤镜并设置参数    fil = p.make_statistical_outlier_filter()    fil.set_mean_k(50)  # 设置近邻点数    fil.set_std_dev_mul_thresh(1.0)  # 设置标准差倍数        # 过滤并保存内点    inlier_cloud = fil.filter()    pcl.save(inlier_cloud, "D:/tests/tutorials/table_scene_lms400_inliers.pcd")        # 设置保存离群点    fil.set_negative(True)    outlier_cloud = fil.filter()    pcl.save(outlier_cloud, "D:/tests/tutorials/table_scene_lms400_outliers.pcd")if __name__ == "__main__":    main()

转载地址:http://oaai.baihongyu.com/

你可能感兴趣的文章
Netty:原理架构解析
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
Network 灰鸽宝典【目录】
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
network小学习
查看>>
Netwox网络工具使用详解
查看>>
Net与Flex入门
查看>>
net包之IPConn
查看>>
Net操作配置文件(Web.config|App.config)通用类
查看>>
Neutron系列 : Neutron OVS OpenFlow 流表 和 L2 Population(7)
查看>>
New Relic——手机应用app开发达人的福利立即就到啦!
查看>>
NFinal学习笔记 02—NFinalBuild
查看>>
NFS
查看>>
NFS Server及Client配置与挂载详解
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>
NFS安装配置
查看>>
NFS的安装以及windows/linux挂载linux网络文件系统NFS
查看>>